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Abstract

This paper analyses the contribution of various numerical approaches to making the estimation
of threshold autoregressive time series more e3cient. It relies on the computational advantages
of QR factorizations and proposes Givens transformations to update these factors for sequential
LS problems. By showing that the residual sum of squares is a continuous rational function
over threshold intervals it develops a new <tting method based on rational interpolation and the
standard necessary optimality condition. Taking as benchmark a simple grid search, the paper
illustrates via Monte Carlo simulations the e3ciency gains of the proposed tools.
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1. Introduction

Nonlinear models have been widely applied in recent years to capture asymmetries,
limit cycles and jump phenomena in the behavior of economic and <nancial time series.
Among these models, the threshold autoregression (TAR) introduced by Tong and Lim
(1980) has received particular attention. This is perhaps the simplest generalization
of an AR model which allows for diCerent regimes for the series depending on its
past values. TAR models have been successfully applied to model nonlinearities in
<nancial variables by permitting an inner regime of sluggish adjustment for small
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disequilibria— or small deviations from some long run equilibrium path or attractor—
and mean reversion in an outer regime comprising large deviations. This nonlinear
behavior has been rationalized on the basis of transaction costs or a low signal-to-noise
ratio hindering pro<table arbitrage opportunities for small disequilibria.
TAR models have also been used successfully to explore asymmetries in macro-

economic variables over the course of the business cycle. 1 There is the question of
whether the apparent persistence in a economic time series such as GNP or unemploy-
ment provides evidence of asymmetries that standard Gaussian linear (<xed) parameter
models cannot accommodate. Thus one aspect of this literature relates to proposals
for new unit root tests in a TAR framework—which can be thought of as extensions
of existing linear tests—where the alternative hypothesis is stationarity with possi-
ble asymmetric adjustment (Enders and Granger, 1998; Berben and van Dijk, 1999;
Coakley and Fuertes, 2001a, b).
A practical problem in using TARs is that standard maximum likelihood (ML)

estimation algorithms cannot be applied since the log-likelihood function is not con-
tinuously diCerentiable with respect to the threshold parameter. This problem has been
commonly tackled by implementing a grid search (GS) over a feasible region of the
threshold space. For a given threshold value, the TAR model is piecewise linear in
the remaining parameters and thus linear estimation techniques can be applied. The
threshold value that maximizes the log-likelihood function over the grid is the ML
estimate. Since in principle any point in the continuous threshold space could maxi-
mize the log-likelihood, a full or detailed GS with a small step size is preferable to a
GS restricted to the order statistics of the threshold variable.
While the latter may deliver inaccurate model parameter estimates for small sample

sizes, a practical problem with the detailed GS is that it may prove computationally
expensive and especially so for widely dispersed data. Though computation costs may
not be an issue in ad hoc <tting of TAR models to single time series, these become
relevant in inference applications of TARs using simulation techniques. For instance,
exploring the small sample properties of TAR-based tests by Monte Carlo or bootstrap
simulation methods and/or estimating response surfaces with a sensible number of
replications can become intractable if no attention is paid to estimation time. These
problems are aggravated if the model is nonlinear in more than one parameter which
eCectively implies a high-dimensional grid search.
The purpose of this paper is twofold. First, it explores systematically the value-added

of QR factorizations and Givens transformations in TAR <tting. In this sense it seeks
to <ll an existing gap in investigating numerical aspects of TAR modeling and to pro-
vide practical recommendations. Second, by showing that the residual sum of squares
of a certain class of TARs is a continuous rational function over threshold intervals,
it proposes a novel <tting approach. Its main advantage is allowing for a continu-
ous feasible range for the threshold parameter. Our approach can be considered as

1 For instance, TARs have been applied to explore the term structure of interest rates by Enders
and Granger (1998), the Nelson–Plosser data set by Rothman (1999), unemployment behavior by Caner and
Hansen (1998) and Coakley et al. (2002), and to model US output by Pesaran and Potter (1997) and
Kapetanios (1999a).
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equivalent to a grid search in the limit as the step size becomes increasingly small,
while still remaining computationally tractable in contrast to the latter.
The remainder of the paper is organized as follows. In Section 2 we outline the TAR

framework and estimation issues. In Section 3 we discuss some numerical tools and
combine them in a novel <tting approach which is summarized step-by-step. The proofs
of Proposition 1 and Theorems 2 and 3 are deferred to an appendix. In Section 4 we
evaluate via Monte Carlo simulation the e3ciency gains of these tools and conclude
in Section 5.

2. The model

2.1. Band-TAR dynamics

An m-regime TAR model can be written as

zt =
m∑
j=1

(�j
0 + �j

1zt−1 + · · ·+ �j
pj zt−pj)It(	

j−16 vt−d ¡	 j) + 
t ; (1)

where 
t ∼ nid(0; �2); It(·) is the indicator function, −∞= 	 0¡	 1¡ · · ·¡	 m=∞
are threshold parameters, pj and d are the positive integer-valued autoregressive (AR)
lag order and threshold delay, respectively. This is a nonlinear model in time but
piecewise linear in the threshold space �. More speci<cally, (1) is a discontinuous (in
conditional-mean) TAR which partitions the one-dimensional Euclidean space into m
linear AR regimes. The speci<c linear mechanism at any given point in time depends
on the values taken by the threshold or switching variable vt−d. The resulting model
for vt−d=zt−d is sometimes called a self-exciting TAR (SETAR) to distinguish it from
those models where vt−d is exogenous. 2

Consider the following <rst-diCerence reparameterization of (1) for m= 3:

Pzt = A(t; 	)−It(vt−d ¡− 	) + B(t)It(−	6 vt−d6 	)

+A(t; 	)+It(vt−d ¿	) + 
t (2)

with

A(t; 	)− = �1(zt−1 + 	) + �2(zt−2 + 	) + · · ·+ �p(zt−p + 	);

A(t; 	)+ = �1(zt−1 − 	) + �2(zt−2 − 	) + · · ·+ �p(zt−p − 	);

B(t) = �0 + �1zt−1 + �2zt−2 + · · ·+ �qzt−q;

where 	¿ 0 is an identifying restriction. This is a generalization of the Band-SETAR
model introduced by Balke and Fomby (1997) where p= q=1 and �0 = �1 = 0. The
latter implies random walk behavior in the inner band. An important feature of

2 (SE)TAR models are special cases of Priestley’s (1998) general nonlinear state-dependent models. In the
related smooth transition AR (STAR) class of models It(·) is replaced by a (continuous) smooth function.
See Tong (1983) and Granger and TerRasvirta (1993).
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Band-TAR processes is that their stability properties depend on the outer band dynamics
only. More speci<cally, even when the inner band has unit root/explosive behavior, if
the roots of the outer band characteristic equation Lp−(�1+1)Lp−1−�2Lp−2−· · ·−�p=0
lie within the complex unit circle then, whenever |vt−d|¿	; zt converges to the edges
of the band [− 	; 	] which act as attractors, and is stationary overall. This Band-TAR
scheme has been extensively applied in the recent nonlinear literature to analyse the
behavior of (demeaned) <nancial and economic variables which are expected to exhibit
symmetric change-point dynamics around a long run equilibrium path. 3

A straightforward extension of (2) is an asymmetric Band-TAR with adjustment
parameters �uj ; j = 1; : : : ; pu and �lj; j = 1; : : : ; pl for the upper (vt−d ¿ 	 u) and lower
(vt−d6 − 	 l) outer regimes, respectively. Another important related speci<cation is
the following continuous (C-)TAR:

Pzt = �u1(zt−1 − 	)It + �l1(zt−1 − 	)(1− It) +
p∑
j=1

�jPzt−j + 
t ;

It =

{
1 if vt−1¿ 0;

0 otherwise;
(3)

where vt−1 = zt−1 − 	. This model characterizes a process with possibly asymmetric
adjustment (�u1 �= �l1) towards the attractor 	. Note that a common feature of (2) and
(3) is that 	 appears explicitly in the conditional mean of Pzt . This C-TAR class
of models—which has generated an extensive literature 4 —was formally introduced by
Chan and Tsay (1998) and proposed by Enders and Granger (1998) as a generalization
of the linear augmented Dickey–Fuller regression to test for unit root dynamics.

2.2. The estimation problem

Let {zt}Nt=1 and {vt}Nt=1 be the time series available for estimation of (2). Ordinary LS
or, equivalently, conditional ML under Gaussian innovations, lead to the minimization
of the following residual sum of squares (RSS) function:

RSS(�) =
n∑
t

(Pzt − A(t; 	)−)2It(vt−d ¡− 	) +
n∑
t

(Pzt − B(t))2It(|vt−d|6 	)

+
n∑
t

(Pzt − A(t; 	)+)2It(vt−d ¿	)

3 Note that (2) assumes outer regimes with the same dynamics �(L) and symmetric thresholds with
respect to zero. For instance, Coakley and Fuertes (2001c) employ this symmetric model to explore the
issue of market segmentation in Europe while Obstfeld and Taylor (1997) <t a more restrictive version with
�0 = �1 = · · · = �q = 0 to analyse the PPP hypothesis.

4 For example, Berben and van Dijk (1999) develop a unit root test based on (3) and Coakley and Fuertes
(2000) extend (3) to develop tests for AR mean-reversion against sign and amplitude asymmetric adjustment.
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with respect to �=(	; �′; �′; d; p; q)′, where �=(�1; : : : ; �p)′ and �=(�0; �1; : : : ; �q)′ are
the outer and inner AR parameters, respectively, and n=N −max(d; p; q) the eCective
sample size.
Let us assume that the lags (d; p; q) are known a priori. Our goal is to estimate the

remaining parameters 	; � and �. Since the above objective function is discontinuous
in 	, standard gradient-based algorithms cannot be applied. If the threshold space � is
small, a simple grid search (GS) can be eCectively used to <nd the value 	̂∈�
that minimizes the RSS (or some LS-based criterion) or maximizes the log-likelihood
function over a countable set of threshold candidates. The remaining (linear) param-
eters can be easily estimated by LS conditional on 	̂. Generalizing the latter to un-
known d; p and q, Chan (1993) shows that under certain regularity conditions for
zt , including stationarity and geometric ergodicity, and iid but not necessarily Gaus-
sian innovations, this sequential LS approach yields estimators �̂; �̂; d̂; p̂ and q̂ which
are strongly consistent at the usual

√
N rate and asymptotically normal, and an es-

timator 	̂ which is (super) N -consistent and has a nonstandard distribution. Chan
and Tsay (1998) extend this asymptotic result to show that (	̂; �̂′; �̂

′
; d̂; p̂; q̂) are

strongly
√
N -consistent and asymptotically normal for C-TAR models such

as (3).
The threshold space is the continuous region � ⊆ R+. However, in practice the

GS is restricted to a feasible (discrete) range in � by <xing a number of thresh-
old candidates which are usually the sample percentiles (or order statistics) of vt−d,
that is, �(t) = {v(1) 6 v(2) 6 · · ·6 v(n)} ⊂ �. However, since in principle any
point in � could maximize the log-likelihood, a full or detailed GS using �� =⋃
i{	ji : 	i ¡	ji ¡	i+1; 	

j+1
i = 	ji + �; j = 1; 2; : : :} ∪ �(t) where 	i = v(i); i = 1; : : : ; n, is

preferable to a GS restricted to �(t). While a potential pitfall of using �(t) is that it
may yield imprecise estimates for small N and widely dispersed data, which imply a
large range v(n)−v(1), a practical problem with �� is that it may prove computationally
expensive for small step size �. In general, the choice of � depends critically on a
trade-oC between computation time and threshold bias. This calls for an estimation
method capable of handling a continuous threshold range while keeping costs within
tractable limits.
For some TARs, threshold values between consecutive order statistics, v(i)¡

	¡v(i+1), change neither the partition of the observed data into regimes nor the as-
sociated (piecewise linear) LS problem. For these TARs, a sensible range for 	 in
estimation is �(t). However, the latter does not apply to models such as (2) or (3)
where the threshold appears explicitly in the conditional mean. This eCectively means
that varying 	 in the range between consecutive order statistics changes the regressors
of the upper and lower equations, {zt−j−	} and {zt−j+	}; j=1; : : : ; p, respectively, and
hence the LS problem even though the same data partition holds. For these TAR types,
using a grid search either with �� or �(t) may yield a suboptimal threshold estimate
whose lack of precision will contaminate the distribution of the remaining parameters.
These practical issues call for a <tting approach which allows for a continuous feasible
range while keeping computation costs within tractable limits. The proposed tools are
in this spirit.
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3. An e�cient estimation approach

3.1. Arranged autoregression and threshold intervals

This section <rst discusses the ordered-autoregression concept introduced by Tsay
(1989) which facilitates e3cient estimation of TARs. It then explores how allowing
for diCerent threshold values in a given (continuous) threshold interval alters the initial
ordered-form setup in the context of model (2).
Without loss of generality, set vt−d = zt−d in (2) and assume d is known a priori.

Let L be a plausible maximum lag order, 16 (p; q)6L. For p= q= L the observed
data {zt}Nt=1 can be represented in a regression framework as y = f(X ) + 
, with
X = (x1; x2; : : : ; xL) where 
 is a disturbance n-vector and y and xj are data n-vectors
of observed data for Pzt and zt−j, respectively, and n = N − max(d; L). Each row
in this matrix-form setup represents an available case for the Band-TAR estimation
problem. Let us transform the latter into a change-point problem by rearranging its
cases according to the threshold variable vt−d. To facilitate this we augment X with
the available observations for the latter as follows:

(X |v) = (zt−1; zt−2; : : : ; zt−L|vt−d) =




x11 x12 : : : x1L v1

x21 x22 : : : x2L v2

...
...

...
...

xn1 xn2 : : : xnL vn



: (4)

Next the rows of y; 
 and (X |v) are rearranged following the ordering of vt−d, the
last column of (X |v). This yields yv = f(X v) + 
v with

(X v|v) = (zvt−1; z
v
t−2; : : : ; z

v
t−L|v(i)) =




xv11 xv12 : : : xv1L v(1)

xv21 xv22 : : : xv2L v(2)

...
...

...
...

xvn1 xvn2 : : : xvnL v(n)



; (5)

where v(i) denotes the ith smallest observation of vt−d. A crucial property of this
reformulation (denoted by the superscript v) is that by permuting (rows) cases of the
initial matrix-form setup, it preserves the dynamics of zt .

Let 	 = 	k (	k ¿ 0) be a plausible threshold value such that two indexes, k1 and
k2 (k1¡k2), are associated with it satisfying v(i)¡−	k for i=1; 2 : : : ; k1; v(i)¿	k for
i=k2; : : : ; n, and −	k6 v(i) 6 	k for i=k1+1; : : : ; k2−1. Using the above ordered-form
notation the s = k2 − k1 − 1 cases classi<ed into the inner regime of the Band-TAR
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model can be written as Pzs = Z�s � + 
s where

Z�s =




1 xvk1+1;1 xvk1+1;2 : : : xvk1+1; L

1 xvk1+2;1 xvk1+2;2 : : : xvk1+2; L

...
...

...
...

1 xvk2−1;1 xvk2−1;2 : : : xvk2−1; L



; (6)

Pzs = (yvk1+1; y
v
k1+2; : : : ; y

v
k2−1)

′ and 
s = (
vk1+1; 

v
k1+2; : : : ; 


v
k2−1)

′. Likewise the r=
n− (k2 − k1 − 1) outer regime cases can be written as Pzr = Z�r (	k)�+ 
r where

Z�r (	k) =




xv11 + 	k xv12 + 	k : : : xv1L + 	k

...
...

...

xvk11 + 	k xvk12 + 	k : : : xvk1L + 	k

xvk21 − 	k xvk22 − 	k : : : xvk2L − 	k

...
...

...

xvn1 − 	k xvn2 − 	k : : : xvnL − 	k



; (7)

Pzr=(yv1; : : : ; y
v
k1 ; y

v
k2 ; : : : ; y

v
n)

′ and 
r=(
v1; : : : ; 

v
k1 ; 


v
k2 ; : : : ; 


v
n)

′. Note that the upper k1×L
and lower (n− k2 +1)×L partition matrices of Z�r (	k) correspond to the A(t; 	k)− and
A(t; 	k)+ outer AR schemes of (2), respectively.
The order statistics of the moduli of vt−d, which are denoted by 	16 	2 6 · · ·6 	n,

are used to de<ne the continuous threshold space �. To guarantee that each regime con-
tains enough observations (cases) for the submodels to be estimable an asymptotic-theory
based rule de<nes � such that for some '¿ 0, and any 	; limn→∞r(n; 	)=n¿ ',
and limn→∞s(n; 	)=n ¿ ' where r and s are the outer and inner regime cases, re-
spectively. A usual choice is ' = 0:15. After <ltering out possible repeated 	i val-
ues, the threshold space is eventually de<ned as � = {⋃i [	i; 	i+1)} ⊆ R+ where
[	i; 	i+1); i= )0; )0 +1; : : : ; )1−1, is a countable number of continuous nonoverlapping
intervals (threshold intervals hereafter) and 'n6 )0; (1 − ')n¿ )1. Note that )0 = 'n
and )1 = (1 − ')n only if there are no repeated order statistics below and above the
'- and (1− ')-quantiles of vt−d, respectively.
Without loss of generality, let us start the iterations from the extreme right-hand

interval [	)1−1; 	)1 ) in � and allow 	 = 	)1−1 as the <rst threshold candidate. The
latter de<nes the inner and outer regressor matrices, Z�s and Z�r (	), respectively, where
s=k2−k1−1; r=k1+(n−k2+1), and k1 and n−k2+1 are the number of cases from
the top and bottom of X v, respectively, classi<ed as outer cases. The outer regressor
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matrix can be rewritten as Z�r (	) = Z0r + U	
r where

Z0r =




xv11 xv12 : : : xv1L
...

...
...

xvk11 xvk12 : : : xvk1L

xvk21 xvk22 : : : xvk2L
...

...
...

xvn1 xvn2 : : : xvnL




(8)

and U	
r =uru

′
	=(1; : : : ; 1;−1; : : : ;−1)′(	; : : : ; 	; 	; : : : ; 	) is a rank-one matrix with ur an

r-vector whose <rst k1 components are 1s and the remaining (n− k2 + 1) components
are −1s, and u	 is a p-vector. Thus Z�r (	) can be seen as a rank-one correction of
Z0r . We call Z0r and U	

r , basis and correction components, respectively. For threshold
values in a given interval, say 	)1−16 	¡	)1 , the same data partition holds and thus
the basis is invariant, whereas the correction changes due to the explicit dependence on
	. The net result is that for within-interval threshold variations Z�r (	) changes, whereas
Z�s is invariant since it does not explicitly depend on 	.

3.2. QR Approach to LS solving

Given a general LS problem

min
,
‖X,− y‖2; (9)

where X ∈Rn×m (n¿m); y∈Rn; ,∈Rm and ‖:‖2 represents the Euclidean length or
2-norm in Rn, its solution can be written in terms of the so-called pseudoinverse or
Moore–Penrose inverse X⊥ (BjRorck, 1996) as

,̂= X⊥y: (10)

However, rather than calculating X⊥ explicitly, decompositions of X or methods to
solve the normal equations (X ′X,= X ′y) associated with (9) are commonly used.
When X is a full-column rank matrix the vector ,̂∈Rm that solves (9), called the

LS estimator, is unique and given by 5

,̂= (X ′X )−1X ′y; (11)

where (X ′X )−1X ′ is the Moore–Penrose inverse of a full-column rank matrix. The
latter can be e3ciently calculated via the QR approach which has the merit of being
relatively cheap in terms of number of operations and computationally stable. The
following Theorem de<nes the QR factorization.

5 A full-column rank regressor matrix implies no exact collinearity between the regressors. This condition
is guaranteed in an AR(p) model since Xn×(p+1) = (1; xt−1; xt−2; : : : ; xt−p).
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Theorem 1 (QR factorization). Let X ∈Rn×m with n¿m. Then there is an orthogonal
matrix Q∈Rn×n, such that

X = Q

(
R

0

)
; (12)

where R∈Rm×m is upper triangular with nonnegative diagonal elements. This is called
the QR factorization of X .

Since orthogonal transformations preserve Euclidean length (9) is equivalent to

min
,
‖Q′(X,− y)‖2; (13)

where

‖Q′(X,− y)‖22 =
∥∥∥∥∥
(
R

0

)
,−

(
d1

d2

)∥∥∥∥∥
2

2

= ‖R,− d1‖22 + ‖d2‖22 (14)

for any ,∈Rm. Since rank(X ) = rank(R) =m, the LS estimator ,̂ can be obtained by
solving the upper triangular linear system R,=d1. 6 The residuals, ê=y−X ,̂, can be
calculated e3ciently by ê = Q(0; d2)′ and the RSS by ‖ê‖22 = ‖d2‖22.
Another important advantage of the QR approach is that when X is altered in par-

ticular ways, the factorization of the resulting matrix X̃ needs not be calculated anew
but can be easily updated from previous factors using, for instance, Givens rotations.
The latter is a computationally stable approach which requires considerably fewer op-
erations than a new factorization. 7 Two scenarios are of particular interest for TAR
modeling: when X̃ is obtained by adding rows to X or as a rank-one correction of
X . Section 3.4 discusses in detail how Givens rotations are integrated in the proposed
<tting approach.

3.3. Locally continuous RSS(	) functions

Let us consider the linear regression model y=X (	),+
 and associated LS problem

min
,
‖X (	),− y‖; (15)

where the n × m (n¿m) regressor matrix depends explicitly on a parameter 	.
Following our discussion in Section 3.2, the LS solution of (15) can be written as

,̂	 = X (	)⊥y (16)

and the RSS, de<ned by ‖ê 	‖22 = (y − X (	),̂	)′(y − X (	),̂	), turns out to be

‖ê 	‖22 = y′P⊥
R(X )y = y′(I − X (	)X (	)⊥)y; (17)

6 This factorization can be modi<ed using pivoting techniques, such as the rank-revealing QR approach,
to solve LS problems where the regressor matrix is rank de<cient.

7 See Stoer and Bulirsch (1992) and Golub and Van Loan (1996). Schlittgen (1997) proposes a fast esti-
mation algorithm for a diCerent type of TAR models—where 	 does not appear explicitly in the conditional
mean—which also uses Givens updates of the QR decomposition.
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where P⊥
R(X ) is the orthogonal projection of Rn onto the range of X (	) and I is the

identity matrix.
If X (	) is full-column rank, then the second-moment matrix X (	)′X (	) is

nonsingular and (17) can be computed by

‖ê 	‖22 = y′(I − X (	)(X (	)′X (	))−1X (	)′)y: (18)

Let X (	) denote a <rst degree polynomial matrix, that is, a matrix whose entries are
<rst degree polynomials. Then there exist constant matrices X0 and X1 such that

X (	) = X0 + X1	; (19)

which implies a second degree polynomial moment matrix

X (	)′X (	) = X ′
0X0 + (X ′

0X1 + X ′
1X0)	+ X ′

1X1	 2: (20)

Our estimation approach builds upon the next theorem.

Theorem 2. If the n × m (n¿m) regressor matrix X (	) in (15) is a -rst degree
polynomial matrix, X (	) = X0 + X1	, with X1 of rank one and whose ith row is
(ci; : : : ; ci) with ci constant, then the sum of squared residuals ‖ê 	‖22 is a rational
function of degree type (4, 2) provided X (	) is a full-column rank matrix.

The result in Theorem 2 is based on the following Proposition.

Proposition 3. If an n × n second degree polynomial matrix is obtained as A(	) =
(B + C	)′(B + C	), where C is a rank-one matrix whose ith row is a vector of the
form (ci; : : : ; ci) with ci constant, then det A(	) is a second degree polynomial.

The proofs of these results can be found in the Appendix. Theorem 2 allows us to
consider a continuous range of values in the identi<cation of the nonlinear parameter 	
while keeping computation costs within tractable limits. As shown in Section 3.1, for
	∈ [	i; 	i+1) the outer regime LS problem can be written as (15) with X (	) = Z�r (	).
Since the latter is a <rst degree polynomial matrix, from Theorem 2 it follows that
the RSS of the Band-TAR model is a rational function of 	 of degree type (4,2) over
each threshold interval, that is RSS(	) ≡ 44;2(	) for 	∈ [	i; 	i+1). Since Z�r (	)

′Z�r (	) is
nonsingular, the denominator of 44;2(	) never vanishes in the interval and thus RSS(	)
is continuous over [	i; 	i+1). It follows that a global minimum exists:

	∗ = arg min
[	i ;	i+1)

44;2(	); (21)

which can be found by applying the necessary optimality condition. Since 44;2(	) is
a relatively low degree rational function, its coe3cients can be cheaply identi<ed in
each interval via rational interpolation using just seven (arbitrary) support points. 8

8 We implement a simple Neville–Aitken type approach which generates a tableau of values of intermediate
rational functions 45;6(	) following the zigzag (0; 0) → (1; 0) → (2; 0) → (3; 0) → (3; 1) → (4; 1) → (4; 2)
in the (5; 6)-diagram.
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3.4. QR updating: Givens transformations

This section discusses, <rst, how Givens rotations can be used to iterate e3ciently
within and across thershold intervals and, second, how the lags p; q and d can be
identi<ed.
For the outer regime, the algorithm starts by considering the submodel for p = L.

The outer-regime LS problem for any 	∈ [	i; 	i+1) can be written as

min
�
‖Z�r (	)�−Pzr‖2; (22)

where, as shown in Section 3.1, its r × L regressor matrix has two components, the
basis Z0r and the correction U	

r ; Z
�
r (	)=Z0r +U

	
r . Since within-interval variations of

	 aCect only U	
r , it follows that the LS problems associated with diCerent candidates

in [	i; 	i+1) can be solved readily by simply updating the QR factors of Z�r (	) for
the diCerent U	

r . Moreover, since Z�r (	) is just a rank-one correction of Z0r , these
within-interval updates can be cheaply obtained via Givens rotations.
Now let us consider across-interval variations of 	, that is, the algorithm moves to

the next (say, contiguous to the left) threshold interval, [	i−1; 	i) ⊂ �. In contrast to the
within-interval variations, not only does the correction U	

r change but also c (c¿ 1)
new cases are classi<ed into the outer regime which de<nes a new basis Z0r with
r=r+c. Since the new Z0r is just the previous interval’s basis with c additional rows,
its QR factorization can be cheaply obtained via Givens rotations.
Consider now the augmented matrix (Z�r (	)|Pzr)L and its QR factorization

(Z�r (	)|Pzr)L = Qr


 Rr dr

0 sr
0 0


 ; (23)

where Qr and Rr are r × r and L × L matrices, respectively, dr is a L-dimensional
vector and sr is an scalar and, for simplicity, we have dropped 	 in the right-hand side
of the equation. It follows that

Z�r (	) = Qr


 Rr

0
0


 and Pzr = Qr


 dr
sr
0


 (24)

and ‖Q′
r(Z

�
r (	)� − Pzr)‖22 = ‖Rr� − dr‖22 + ‖sr‖22. It follows that the LS estimator �̂

can be e3ciently calculated by solving (back substitution) the upper triangular system
Rr�̂= dr , that is



r11 r12 : : : r1L−1 r1L
0 r22 : : : r2L−1 r2L
...

...
...

...
0 0 : : : rL−1L−1 rL−1L

0 0 : : : 0 rLL



�̂=




dr1
dr2
...
drL−1

drL




(25)

and the RSS estimator is given by RSS�r (	; L) = ‖sr‖22 = s2r .
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If for the same given 	 in [	i; 	i+1) we consider the model for p = L − 1, the
associated outer matrix (Z�r (	)|Pzr)L−1 is just (Z�r (	)|Pzr)L with the last column of
Z�r (	) deleted. 9 This has minimal impact on the earlier QR factors in (23), that is

(Z�r (	)|Pzr)L−1 = Qr



R̃r dr

0 sr

0 0


 ; (26)

where R̃r is just Rr with its last column deleted, giving RSS�r (	; L − 1) = d2rL + s2r =
d2rL+RSS

�
r (	; L). This can be generalized to any order p¡L as RSS�r (	; p)=d

2
r;p+1 +

RSS�r (	; p+1)=d2r;p+1+d
2
r;p+2 · · ·+d2rL+ s2r . Once the iterations for p=L; L−1; : : : ; 1

are completed the best order (conditional on d and 	) can be obtained by minimizing
an Akaike Information Criterion (AIC) following Tong (1983):

p̃r(	; d) = arg min
16p6L

AIC�(	; d; p); (27)

where AIC�(	; d; p)=r ln(RSS�r (	; p)=r)+2p and AIC�(	; d; p̃r) represents the minimal
criterion associated with d and a speci<c 	 in [	i; 	i+1). 10 For each interval, our
<tting procedure <nds <rst the optimal 	∗p associated with each p = L; L − 1; : : : ; 1,
by minimizing a continuous rational function as discussed in Section 3.2, and then
minimizes the resulting AIC�(	∗p; d; p) sequence to <nd p̃r(	∗p̃r ; d).

For the inner regime, the algorithm proceeds analogously to calculate RSS�s and
AIC� sequentially for q= L; L− 1; : : : ; 1. However, since the inner-regime LS problem
is within-interval invariant, a unique best-<t q̃s and minimal AIC�(d; q̃s) are associated
with all 	∈ [	i; 	i+1). For the Band-TAR, a minimal AIC for each interval is calculated
as AICTAR(	∗p̃r ; d; p̃r ; q̃s)=AIC�(	

∗
p̃r ; d; p̃r)+AIC�(d; q̃s), which gives an AIC sequence.

The values (	; p; q) that minimize this sequence conditional on a given d, that is

(	̃; p̃; q̃) = arg min
[	i ;	i+1)⊂�

AICTAR(	∗p̃r ; d; p̃r ; q̃s) (28)

are the LS estimates and AICTAR(	̃; d; p̃; q̃) is the minimal AIC of the Band-TAR model
for a given d. 11

9 Using for order p¡L the same Z	r (	) matrix as for order L with its last L − p columns deleted is
computationally e3cient but implies that L − p available cases (rows) for Z	r (	) are not used. Though in
this sense the LS solution for the p¡L models is suboptimal, this is tolerated since in general (parsimony
principle) L is not too large and this simpli<cation delivers a much faster algorithm. Nevertheless, once
(	; d; p; q) are identi<ed the algorithm estimates � and � using all available data.
10 Alternatively one could adopt the more parsimonious Schwarz Bayesian criterion (SBC) or the Hannan–

Quinn criterion (HQC) which lies somewhere between the AIC and HQC. Discussing the relative adequacy
of these and other criteria goes beyond the scope of this paper. See Kapetanios (1999b).
11 Note that only RSS�r and RSS�s , but not �̂ and �̂, are required for the identi<cation of (	; d; p; q). A

number of operations can be avoided by updating only the Q and R matrices involved in the former’s
estimation. In particular, the interval-by-interval iterations for the outer regime require updates of both the
Q and R factors of Z0�r to obtain Z�r ’s factorization (due to the rank-one correction U�

r ), whereas the
inner-regime iterations only require updating the R factor of Z�s .
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If d is not known a priori—as is common in practice—the above procedure is re-
peated for diCerent d∈{1; : : : ; D} where D is some maximum plausible threshold delay.
This gives a sequence of AICTAR(	̃; d; p̃; q̃) values. The LS estimates of (	; d; p; q) are
obtained by minimizing this sequence, that is

(	̂; d̂; p̂; q̂) = arg min
16d6D

AICTAR(	̃; d; p̃; q̃) (29)

or alternatively, following Tong and Lim (1980), the normalized AIC (NAIC) sequence

(	̂; d̂; p̂; q̂) = arg min
16d6D

AICTAR(	̃; d; p̃; q̃)=(N −max(d; L)) (30)

where N −max(d; L) is the eCective sample size. Once 	̂; d̂; p̂ and q̂, are identi<ed the
model becomes (piecewise) linear in the remaining parameters, � and �, which can be
easily estimated by LS.

3.5. The proposed -tting approach

The following steps can be followed to identify and estimate the Band-TAR
parameters:

(i) Fix D and L, some maximum feasible values for the threshold delay and AR lag
orders, respectively. Set the minimum number of observations required in each
regime to m= 'N where N is the sample size. A usual choice is ' = 0:15.

(ii) For each d∈{1; 2; : : : ; D} repeat the following:
• Arrange the data in ordered autoregressive form (yv; X v) as described in

Section 3.1.
• De<ne the threshold space � = {⋃i [	i; 	i+1); i = )0; )0 + 1; : : : ; )1 − 1} ⊂ R+

by means of continuous nonoverlapping thershold intervals as described in
Section 3.1.

• Repeat the following operations for the outer regime:
(1) Use as initial threshold interval [	i; 	i+1), the extreme right-hand interval

in �. Filter out the outer-regime cases in (yv; X v) to form the (augmented)
basis matrix (Z0�r |Pzr)p for order p= L. Compute the QR factorization of
the latter.

(2) Choose 7 arbitrary (e.g. equally spaced) thresholds 	ji ∈ [	i; 	i+1); j=1; : : : ; 7.
(3) Factorize the augmented regressor matrix (Z�r (	

j
i
)|Pzr)p; j = 1; : : : ; 7, by

means of (rank-one-correction) Givens updates of the QR factorization of
(Z0�r |Pzr)p.

(4) Use the updated R factor to compute RSS�r (	
j
i ; p); j = 1; : : : ; 7.

(5) Identify 44;2
p (	) via rational interpolation with support points (	ji ; RSS

�
r (	

j
i ;

p)); j = 1; : : : 7.
(6) Find 	∗p, the value that minimizes 44;2

p (	) in [	i; 	i+1) using the neces-
sary optimality condition. Compute the associated minimal RSS�r (	

∗
p; p) and

AIC�(	∗p; d; p).



2232 J. Coakley et al. / Journal of Economic Dynamics & Control 27 (2003) 2219–2242

(7) Set p=p−1. Apply Givens rotations to the QR factorization of (Z0�r |Pzr)p+1

to re-factor the new basis matrix, (Z0�r |Pzr)p, which is just the previous
basis with the last column of Z0�r deleted.

(8) Repeat steps 2–7 until p= 1 is completed.
(9) Find p̃r (and associated optimal 	∗p̃r ), the best-<t order for the active thresh-

old interval as the value that minimizes the AIC�(	∗p; d; p) sequence

p̃r = arg min
16p6L

AIC�(	∗p; d; p)

and compute the minimal AIC�(	∗p̃r ; d; p̃r).
(10) Move to the next (contiguous to the left) threshold interval in �. Re-factor

the new basis (Z0�r |Pzr)p for p=L by applying Givens rotations to the QR
decomposition of the previous interval analogous basis (these two matrices
diCer only in that the former has c additional row(s) or r = r + c; c¿ 1).

(11) Repeat steps 2–10 until the last threshold interval in � (extreme left-hand
interval) has been considered.

• Repeat the following operations for the inner regime:
(1) Use as starting interval [	i; 	i+1) the last interval used in the outer itera-

tions. Filter out the inner-regime cases in (yv; X v) to form the augmented
regressor matrix, (Z�s |Pzs)q for order q=L. Calculate its QR decomposition.

(2) Use the R factor of (Z�s |Pzs)q to compute RSS�s (q) and the associated
AIC�(d; q) = s ln(RSS�s =s) + 2(q+ 1).

(3) Set q= q− 1 and apply Givens rotations to the R factor of (Z�s |Pzs)q+1 to
obtain the R factor of the new (Z�s |Pzs)q which is just the former matrix
with the last column of Z�s deleted.

(4) Repeat steps 2 and 3 until q= 1.
(5) Determine q̃s, the best-<t order for the active threshold interval as the value

that minimizes the AIC�(d; q) sequence

q̃s = arg min
16q6L

AIC�(d; q)

and compute the minimal AIC�(d; q̃s).
(6) Move to the next (contiguous to the right) interval in �. Obtain the R factor

of the new (Z�s |Pzs)q for q=L by applying Givens rotations to the R factor
of the analogous matrix for the previous interval (these two matrices diCer
only in that the new matrix has additional row(s) or s= s+ c; c¿ 1).

(7) Repeat steps 2–6 until the last interval in � (right-hand extreme interval)
has been considered.

• For each threshold interval compute an overall AIC from the (outer and inner)
AIC obtained in steps 9 and 5, i.e. AICTAR(	∗p̃r ; d; p̃r ; q̃s) = AIC�(	∗p̃r ; d; p̃r) +
AIC�(d; q̃s). Minimize the latter sequence, conditional on d, across intervals to
<nd:

(	̃; p̃; q̃) = arg min
[	i ;	i+1)⊂�

AICTAR(	∗p̃r ; d; p̃r ; q̃s)
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and calculate the associated minimal NAIC as

NAICTAR(	̃; d; p̃; q̃) = AICTAR(	̃; d; p̃; q̃)=(N −max(d; L)):

(iii) The LS estimates 	̂; d̂; p̂ and q̂ are obtained by minimizing the NAIC sequence:

(	̂; d̂; p̂; q̂) = min
16d6D

NAICTAR(	̃; d; p̃; q̃):

(iv) Finally, estimate the adjustment parameters of the Band-TAR model, � and �,
conditional on (	̂; d̂; p̂; q̂) by ordinary LS using all available data.

4. Simulation analysis

This section investigates via Monte Carlo simulation the merits of the proposed
numerical tools in the context of Band-TAR <tting.

4.1. Monte Carlo design

Three particular cases of Band-SETAR model (2) are considered in the
experiments: 12

(I) q= 2; p= 2; d= 1; 	= 0:35; �′ = {0:5;−0:55;−0:75}; �′ = {−0:8;−0:75},
(II) q= 1; p= 3; d= 2; 	= 0:92; �′ = {0:4;−1:0}; �′ = {−0:5;−0:73;−0:35},
(III) q= 3; p= 5; d= 1; 	= 0:18; �′ = {−0:95;−1:65; 0:8; 0:45},

�′ = {−1:8; 0:35; 0:4;−0:6;−0:75}:
The error term 
t is generated as nid(0; �2
 ) with �2
 = {0:2; 0:4; 0:9}. Thus eCectively
nine diCerent data generating processes (DGPs) are used. The sample sizes are N =
{100; 200} after discarding the initial 200 observations. In all experiments we replicate
the simulations 500 times. Four <tting approaches are compared:

• The (continuous) approach summarized step-by-step in Section 3.5 which uses ratio-
nal interpolation together with QR factorization and Givens updating [F1 hereafter].

• A grid search (GS) which uses QR factorization and Givens updating [F2].
• A GS using QR factorization (no Givens updating) [F3].
• A simple GS (no QR factorization or Givens updating) [F4].

The maximum lags considered are D = 4 and L = {4; 7}. 13 The minimum number
of observations per regime is m = )N with ) = 0:15 and the step size of the GS is
� = 10−1. Since once the change-point 	̂ is identi<ed the Band-TAR model becomes
piecewise linear in the remaining parameters, our comparative analysis focuses on
bias and e3ciency of the former and on computation costs. The following descriptive
measures are employed to summarize the results: mean bias (B5), root mean squared

12 The simulations were programmed in GAUSS 3.2.26 and run on a 500MHz Pentium III.
13 To keep the analysis simple we use L = 4 for DGP I and DGP II and L = 7 for DGP III.
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Table 1
Simulation results for <tting procedure F1

DGP N �2
 �2
	̂

B5 t5(min) RMSE B) t)(min) MAD

I 100 0.2 0.00038 −0:00028 0.2425 0.01949 0.00013 0.2335 0.01023
I 100 0.4 0.00108 0.00060 0.2332 0.02940 −0:00105 0.2341 0.01440
I 100 0.9 0.26110 0.24211 0.2319 0.56500 0.04996 0.2325 0.07308

I 200 0.2 0.00045 0.00015 1.043 0.02084 −0:00102 1.043 0.00896
I 200 0.4 0.00173 0.00372 1.058 0.04014 −0:00026 1.051 0.01501
I 200 0.9 0.02059 0.04181 1.044 0.10943 0.00715 1.047 0.02957

II 100 0.2 0.03862 −0:12870 0.2351 0.23480 −0:04672 0.2365 0.06494
II 100 0.4 0.03635 −0:04014 0.2357 0.17770 −0:00126 0.2368 0.04246
II 100 0.9 0.04400 0.00578 0.2359 0.20891 0.00623 0.2370 0.05006

II 200 0.2 0.00793 −0:03527 1.041 0.09572 −0:00924 1.046 0.01970
II 200 0.4 0.00299 −0:00062 1.046 0.05807 −0:00111 1.047 0.01642
II 200 0.9 0.00463 0.00281 1.040 0.06839 −0:00026 1.040 0.01881

III 100 0.2 0.03246 0.09917 0.2658 0.20280 0.06753 0.2666 0.06753
III 100 0.4 0.21313 0.30622 0.2659 0.54164 0.13130 0.2667 0.13130
III 100 0.9 1.1013 0.91536 0.2664 1.3917 0.28592 0.2670 0.28601

III 200 0.2 0.00207 0.06007 1.287 0.07535 0.05349 1.288 0.05349
III 200 0.4 0.03413 0.12804 1.301 0.22463 0.10799 1.300 0.10799
III 200 0.9 0.69216 0.54177 1.297 0.99211 0.22343 1.297 0.22343

Note: �2
	̂
is the sample variance of 	̂; B5 = 8(	̂ − 	)=M ; RMSE =

√
8(	̂− 	)2=M ; MAD = median

(|	̂− 	|); B) = median(	̂− 	); t5 = 8t̂=M ; t) = median(t̂); t̂ denotes computation time in min.

error (RMSE), median bias (B)), mean absolute deviation (MAD), sample variance
(�2
	̂
), mean computation time (t5) and median computation time (t)).

4.2. Monte Carlo results

The estimation results, summarized in Tables 1–4, indicate that the threshold param-
eter estimates (	̂) do not appear to suCer from systematic upward or downward bias.
The diCerent bias measures for 	̂ from procedure F1 are generally smaller than those
from any of the GS methods (F2–F4) despite the relatively small step size employed.
For instance, for DGP II (with N = 100; �2
 = 0:2) the RMSE and MAD from F1 are
only 28% and 44% that from F2, respectively. We checked whether reducing the step
size from � = 10−1 to � = 10−3 overturns this outcome. Focusing on the GS proce-
dure F2 the results suggest that, though the biases fall the estimator 	̂ from F1 still
remains less biased. For instance, the RMSE for DGP I and DGP II with N = 100
and �2
 =0:2 falls from 0.06960 to 0.02210 and from 0.24739 to 0.23592, respectively.
The downside of such step size reduction is that computation costs appear multiplied
by a factor of some 3 to 13 times depending on the speci<cations (Coakley et al.,
2001).
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Table 2
Simulation results for <tting procedure F2

DGP N �2
 �2
	̂

B5 t5(min) RMSE B) t)(min) MAD

I 100 0.2 0.00485 0.00098 0.0592 0.06960 −0:00543 0.0592 0.02287
I 100 0.4 0.01684 0.01107 0.0593 0.13012 −0:00513 0.0593 0.03243
I 100 0.9 0.28533 0.25132 0.0598 0.58985 0.04611 0.0598 0.07943

I 200 0.2 0.00051 −0:00192 0.3659 0.02254 −0:00280 0.3659 0.01037
I 200 0.4 0.00168 −0:00495 0.3659 0.04125 −0:00423 0.3660 0.01772
I 200 0.9 0.02431 0.04267 0.3659 0.16149 0.00788 0.3658 0.03132

II 100 0.2 0.03947 −0:14770 0.0586 0.24739 −0:06622 0.0584 0.07105
II 100 0.4 0.02909 −0:04311 0.0584 0.20121 −0:01117 0.0584 0.05067
II 100 0.9 0.05414 −0:00738 0.0591 0.23268 0.00291 0.0591 0.06890

II 200 0.2 0.02559 −0:03774 0.3660 0.18606 −0:01618 0.3660 0.02109
II 200 0.4 0.00311 −0:00780 0.3659 0.06629 −0:00441 0.3658 0.01632
II 200 0.9 0.00625 −0:00412 0.3662 0.07909 −0:00486 0.3660 0.02003

III 100 0.2 0.03795 0.09348 0.0637 0.21840 0.06558 0.0637 0.06558
III 100 0.4 0.22717 0.26022 0.0639 0.54261 0.13932 0.0638 0.13932
III 100 0.9 1.2808 0.98141 0.0650 1.4972 0.28545 0.0648 0.28545

III 200 0.2 0.00215 0.06485 0.4103 0.07956 0.05966 0.4103 0.05966
III 200 0.4 0.02246 0.11452 0.4113 0.18849 0.09823 0.4107 0.09823
III 200 0.9 0.73273 0.54422 0.4111 1.0136 0.21697 0.4108 0.21697

With the exception of DGP III, the threshold dispersion (�2
	̂
) suggests that the

estimates from F1 are generally more e3cient. Hence, these results provide prima
facie evidence that permitting a continuous range of variation for the threshold in
Band-TAR <tting can help reduce small-sample biases and increase the e3ciency of the
threshold estimator. 14 This is important given that the remaining (linear) parameters
in the TAR model are estimated conditional on 	̂. Finally, the GS procedures produce
virtually identical results in terms of bias and e3ciency, as expected, since they de<ne
the same feasible set of threshold candidates. 15

In terms of computation costs, a ceteris paribus comparison of F3 and F4 across
speci<cations indicates that by using the QR approach to LS solving, TAR estimation
time—as measured by t5 and t)—falls by a factor of 1.5 on average for the diCerent
DGPs. These time savings are likely to increase sharply in TAR-based inference anal-
ysis using simulations. For instance, in a Monte Carlo analysis of the small sample
properties (such as size and power) of a Band-TAR unit root test—the null is unit root
behavior and the alternative Band-TAR stationarity—with N = 100; L = 7 and D = 4

14 This conclusion can be extended to other TAR schemes where the threshold also appears explicitly in
the conditional mean, such as C-TAR model (3).
15 We also compared the detailed GS approaches F2–F4 with a GS restricted to the order statistics of

the simulated zt . The results reveal that the threshold estimates from the latter suCer more often from
‘suboptimality’ in the sense that they are more biased and less e3cient on average. See Coakley et al.
(2000).
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Table 3
Simulation results for <tting procedure F3

DGP N �2
 �2
	̂

B5 t5(min) RMSE B) t)(min) MAD

I 100 0.2 0.00449 0.00122 0.0841 0.06699 −0:00453 0.0838 0.02121
I 100 0.4 0.03547 0.03357 0.0848 0.19111 −0:00599 0.0845 0.03633
I 100 0.9 0.18521 0.21141 0.0872 0.47909 0.07603 0.0868 0.08679

I 200 0.2 0.00050 −0:00345 0.3162 0.02251 −0:00334 0.3162 0.00965
I 200 0.4 0.00361 0.00015 0.3313 0.06045 −0:00374 0.3310 0.01800
I 200 0.9 0.05206 0.04977 0.3178 0.23330 0.00628 0.3172 0.03186

II 100 0.2 0.04131 −0:39739 0.0674 0.44626 −0:42112 0.0706 0.42112
II 100 0.4 0.07537 −0:18965 0.0790 0.33344 −0:07572 0.0833 0.11401
II 100 0.9 0.04350 −0:02784 0.0878 0.21020 −0:01035 0.0878 0.05149

II 200 0.2 0.03163 −0:22267 0.2683 0.28486 −0:20523 0.2731 0.20523
II 200 0.4 0.00498 −0:01379 0.3128 0.07183 −0:00801 0.3158 0.01979
II 200 0.9 0.00668 −0:00733 0.3313 0.08171 −0:00787 0.3313 0.02115

III 100 0.2 0.03239 0.10851 0.3110 0.21001 0.07437 0.3105 0.07437
III 100 0.4 0.24141 0.30478 0.3163 0.57776 0.13939 0.3155 0.13939
III 100 0.9 1.1949 0.94876 0.3539 1.4466 0.29352 0.3508 0.29352

III 200 0.2 0.00188 0.06268 1.2815 0.07621 0.05491 1.2810 0.05491
III 200 0.4 0.05126 0.14308 1.2816 0.26763 0.11208 1.2808 0.11208
III 200 0.9 0.78740 0.62651 1.4050 1.0855 0.23885 1.4047 0.23885

and a sensible number of replications, say 10,000, the diCerence between employing
F3 or F4 is some 1500 min: (� 25 h:). A comparison of F2 and F3 reveals that using
Givens rotations to update the QR factors (rather than calculating them anew) reduces
computation time by a ratio of 1.5 when L= D = 4 (DGP I and DGP II) and a ratio
of some 5.5 times when L = 7 and D = 4 (DGP III). These ratios are magni<ed for
the larger sample size N = 200. Therefore, Givens rotations can reduce the costs of
TAR <tting, and more so the larger is L(D) which increases the number of potential
models.
A comparison of F2 and F4 suggests that both the QR factorization and Givens

rotations jointly reduce estimation costs by some 2.2 to 8.2 times depending on the
speci<cations. The latter translate into a time diCerence of some 4320 min: (� 72 h:)
in a Monte Carlo analysis of the small sample properties of a Band-TAR test with
N = 100, L= 7; D= 4 and 10,000 replications. Finally, as expected from the way the
feasible threshold range is de<ned, computation costs increase with innovation volatility
for the GS methods F2–F4 whereas they are invariant to data dispersion for F1 and
depend only on sample size. This diCerence may be relevant when <tting Band-TARs
to highly volatile time series such as those involving <nancial variables. 16

16 As an illustration of Band-TAR modeling, the algorithm outlined above is applied to US dollar exchange
rate data of six core members of the ERM (Belgium, Denmark, France, Germany, Italy and the Netherlands)
plus the UK. See Coakley et al. (2000).
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Table 4
Simulation results for <tting procedure F4

DGP N �2
 �2
	̂

B5 t5(min) RMSE B) t)(min) MAD

I 100 0.2 0.00319 −0:00218 0.1261 0.05646 −0:00442 0.1260 0.02009
I 100 0.4 0.02356 0.03199 0.1268 0.15666 −0:00149 0.1267 0.03178
I 100 0.9 0.24187 0.24309 0.1276 0.58816 0.05634 0.1271 0.07822

I 200 0.2 0.00047 −0:00102 0.4558 0.02168 −0:00215 0.4558 0.00960
I 200 0.4 0.00216 −0:00119 0.4561 0.04641 −0:00408 0.4559 0.01820
I 200 0.9 0.07688 0.06923 0.4577 0.28552 0.01025 0.4572 0.03192

II 100 0.2 0.04214 −0:38885 0.1096 0.43961 −0:42031 0.1124 0.42031
II 100 0.4 0.03849 −0:08029 0.1373 0.21182 −0:01053 0.1437 0.45778
II 100 0.9 0.04498 −0:03942 0.1449 0.21551 −0:00836 0.1446 0.05100

II 200 0.2 0.03119 −0:21916 0.3947 0.28135 −0:21112 0.4096 0.21112
II 200 0.4 0.00399 −0:00697 0.4562 0.06605 −0:00638 0.4568 0.01829
II 200 0.9 0.00559 −0:00455 0.4599 0.07485 −0:00414 0.4588 0.01970

III 100 0.2 0.05707 0.12185 0.4376 0.26796 0.07536 0.4361 0.07536
III 100 0.4 0.28301 0.28402 0.4443 0.63731 0.14287 0.4423 0.14287
III 100 0.9 1.2430 1.0356 0.5328 1.5209 0.3099 0.5348 0.3099

III 200 0.2 0.00174 0.06087 1.8149 0.07375 0.05744 1.8150 0.05744
III 200 0.4 0.07061 0.15025 1.9549 0.30504 0.11622 1.9548 0.11622
III 200 0.9 0.86391 0.62951 1.8256 1.12181 0.23258 1.8252 0.23258

5. Conclusions

This paper investigates numerical aspects of TAR <tting. In this context it evalu-
ates the computational advantages of the QR approach and Givens transformations. In
addition it shows that, for a particular class of TARs, the model residual sum of squares
is a continuous rational function over particular threshold intervals. Building on this
result we propose a novel algorithm which, in contrast to a grid search, allows for
a continuum of values for the threshold parameter while keeping computational costs
within tractable limits. While the latter is discussed in the context of Band-TARs it can
be easily generalized to other TAR models. Monte Carlo experiments are conducted to
compare the e3ciency of diCerent <tting procedures.
Our simulation results suggest that QR factorizations and Givens updates signi<cantly

reduce (up to eight times for the speci<cations used) the computation costs of the
sequential conditional LS involved in TAR <tting, and especially so the larger the
maximum plausible lag order and delay parameter. If threshold parameter accuracy
is important, the continuous-threshold-range method is the preferred approach while,
if speed is more relevant, a fast GS using QR factorizations and Givens updates is
recommended. Finally, when the objective is a trade-oC between threshold accuracy
and computation costs, we suggest a mixed approach. The latter consists of a GS
which uses the rational function component in long threshold intervals.
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Issues for future research include improving the rational interpolation algorithm in
terms of computation time and stability and investigating further the properties of the
residual sum of squares rational functions.
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Appendix.

This appendix includes the proof of the main results in Section 3.3. It starts by
proving the following more general result.

Theorem 4. Given an n×n polynomial matrix of degree r; A(	)=A0+	A1 · · ·+	 rAr ,
where Ai for i=1; : : : ; r are rank-one matrices, then det A(	) is a polynomial of degree
r(r + 1)=2 if n¿ r or n r − n(n− 1)=2 if n¡r.

Proof. If Ai = (ai1; : : : ; a
i
n)

′ and we denote by pi(	) the polynomial vector a0i + 	a1i +
· · ·+	 rari then the polynomial matrix can be written as A(	)=(p1(	); p2(	) : : : pn(	))′.
Using the properties of the determinant

det A(	) = det




(a01)
′

p2(	)′

: : :

pn(	)′


+ 	 det




(a11)
′

p2(	)′

: : :

pn(	)′


+ · · ·+ 	 rdet




(ar1)
′

p2(	)′

: : :

pn(	)′


 : (31)

Analogously, it can be shown that

det (ai1; p2(	); : : : ; pn(	))
′ = det P(i;0) + 	 det P(i;1) + · · ·+ 	 rdet P(i; r);

where P(i; j) denotes the matrix (ai1; a
j
2 ; p3(	); : : : ; pn(	))

′.
Substituting the above expression in (31) and factoring out 	 k gives

det A(	) = det P(0;0) + 	[det P(0;1) + det P(1;0)]

+	 2[det P(0;2) + det P(1;1) + det P(2;0)]

+ · · ·+ 	 r[det P(0; r) + det P(1; r−1) + · · ·+ det P(r;0)]

+	 r+1[det P(1; r) + · · ·+ det P(r;1)] + · · ·+ 	 2rdet P(r; r):

Note that in the above formula every power 	 k multiplies a sum of determinants,
det P(i; j), with the common property that the sum of their indices i and j (upper indices
of the <rst two—constant—rows) equals power k. Moreover, those determinants for
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which i = j, for i; j �= 0 vanish. This last property is due to the hypothesis of rank
unity for Ai i = 1; : : : ; r.
This process is continued recursively until all matrices appearing in the formula for

det A(	) are constant. It follows that the determinant of the matrix whose row upper
indices add up to a maximum possible value, s, (without nonzero repeated indices)
establishes the highest attainable power, 	 s, in det A(	). Then, the latter matrix must
contain rows ari1 ; a

r−1
i2 ; : : : ; ar−n+1

in if n¡r or ari1 ; a
r−1
i2 ; : : : ; a1ir if n¿ r, giving s= r+

(r − 1) + · · · + (r − n + 1) = n r − n(n − 1)=2 for the former and s = r + (r − 1) +
· · ·+ 1 = r(r + 1)=2 for the latter.

The above proof provides a formula for det A(	). As an example, let us consider the
particular case r = 2. In this case, the degree of this polynomial is r(r + 1)=2 = 3 and

det A(	) = det A0 + 	

(
n∑
i=1

det Ai0(1)

)
+ 	 2

(
n∑
i=1

det Ai0(2)

)

+	 3


 n∑
i; j=1 i 	=j

det Ai;j0(1;2)


 ; (32)

where

Ai0(1) = (a01; : : : ; a
0
i−1; a

1
i ; a

0
i+1; : : : ; a

0
n)

′;

Ai0(2) = (a01; : : : ; a
0
i−1; a

2
i ; a

0
i+1; : : : ; a

0
n)

′;

Ai; j0(1;2) = (a01; : : : ; a
0
i−1; a

1
i ; a

0
i+1; : : : ; a

0
j−1; a

2
j ; a

0
j+1; : : : ; a

0
n)

′:

Proceeding analogously, results can be established for polynomial matrices in which the
Ai components have rank diCerent from one. We do not include them here
for space considerations. We are particularly interested in the case where r=2 and A1

and A2 have rank two and one, respectively. For the latter, the analogous formula to
(32) is

det A(	) = det A0 + 	

(
n∑
i=1

det Ai0(1)

)
+ 	 2


 n∑

i=1

det Ai0(2) +
n∑

i; j=1

det Ai;j0(1;1)




+	 3


 n∑
i; j=1

det Ai;j0(1;2)


+ 	 4


 n∑
i; j; k=1

det Ai;j; k0(1;1;2)


 ; (33)

where indexes i; j, and k in the same sum are always diCerent. This formula will be
used to prove Proposition 1.

Proof of Proposition 1. The matrix A(	) obtained as (B+C	)′(B+C	) is the following
second degree polynomial matrix:

A(	) = A0 + 	A1 + 	 2A2; (34)
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where A1 = B′C + C′B and A2 = C′C. Taking into account the special structure of C
we have

A1 =




d1 + d1 d1 + d2 : : : d1 + dn

d2 + d1 d2 + d2 : : : d2 + dn

...
...

...

dn + d1 dn + d2 : : : dn + dn



; A2 =



' : : : '

...
...

' : : : '


 ; (35)

where di=
∑n

j=1 (cjbji) and '=
∑n

i=1 c
2
i : A2 is clearly a rank one matrix and we prove

next that A1 has rank two. To see this, let us take any 3 × 3 submatrix from A1 and
calculate its determinant

det (d1 + dj; d2 + dj; d3 + dj)′ = det (d1; d2 + dj; d3 + dj)′

+det (dj; d2 + dj; d3 + dj)′

= det (d1; d2; d3 + dj)′ + det (d1; dj; d3 + dj)′

+det (dj; d2; d3 + dj)′ + det (dj; dj; d3 + dj)′;

where dj = (dj1 ; dj2 ; dj3 )
′; dk = dik (1; 1; 1)

′ with k = 1; 2; 3. The <rst and fourth terms
(determinants) of the last equality are clearly zero. Writing the remaining two terms
as sums of determinants they are also seen to vanish.
Hence formula (33) can be applied yielding that det A(	) is a fourth degree or lower

polynomial. However, notice that in the resulting formula every determinant appearing
in the sum multiplying 	 4 vanishes because

det Ai;j; k0(1;1;2) = det (a01 : : : ; '1; : : : ; dj1+ d; : : : ; dk1+ d; : : : ; an0)
′

= det (: : : ; '1; : : : ; dj1; : : : ; dk1+ d; : : :)′

+det (: : : ; '1; : : : ; d; : : : ; dk1+ d; : : :)′

= det (: : : ; '1; : : : ; d; : : : ; dk1; : : :)′ + det (: : : ; '1; : : : ; d; : : : ; d; : : :)′

= 0

where 1 and d denote the vectors (1; : : : ; 1)′ and (d1; : : : ; dn), respectively. Besides, the
coe3cient of 	 3 is also zero because

det Ai;j0(1;2) =−det Aj; i0(1;2): (36)

This last equality follows from

det Ai;j0(1;2) = det (a0; : : : ; di1+ d; : : : ; '1; : : : ; a0n)
′

= det (a0; : : : ; d; : : : ; '1; : : : ; a0n)
′: (37)

Then det A(	) has degree two since the coe3cients of both 	 4 and 	 3 are zero.
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Proof of Theorem 2. Taking into account that

(X (	)′X (	))−1 =
1

det (X (	)′X (	))
adj(X (	)′X (	)); (38)

we conclude from Proposition 1 that the entries of the matrix (X (	)′X (	))−1 are
rational functions of degree (2,2). The result of this theorem is a straightforward con-
sequence of the latter and formula (18).
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